

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATIO	N: Bachelor of science in	Applied Mathematics and Statistics
QUALIFICATIO	N CODE: 35BAMS	LEVEL: 7
COURSE CODE: NUM702S		COURSE NAME: NUMERICAL METHODS 2
SESSION:	JANUARY 2020	PAPER: THEORY
DURATION:	3 HOURS	MARKS: 90

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER		
EXAMINER	Dr S.N. NEOSSI NGUETCHUE	
MODERATOR:	Prof S.S. MOTSA	

INSTRUCTIONS

- 1. Answer ALL the questions in the booklet provided.
- 2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 to 5 decimals where necessary unless specified otherwise.
- 3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Attachments

None

Problem 1 [20 Marks]

1-1. Find the Padé approximation $R_{2,2}(x)$ for $f(x) = \ln(1+x)/x$ starting with the MacLaurin expansion

$$f(x) = 1 - \frac{x}{2} + \frac{x^2}{3} - \frac{x^3}{4} + \frac{x^4}{5} - \dots$$
 [12]

1-2. Use the result in 1-1. to establish $\ln(1+x) \approx R_{3,2} = \frac{30x + 21x^2 + x^3}{30 + 36x + 9x^2}$ and express $R_{3,2}$ in continued fraction form.

Problem 2 [25 Marks]

For any non negative interger n we define Chebyshev polynomial of the first kind as

$$T_n(x) = \cos(n\theta)$$
, where $\theta = \arccos(x)$, for $x \in [-1, 1]$.

2-1. Show the following property:

 T_n has n distinct zeros $x_k \in [-1,1]: x_k = \cos\left(\frac{(2k+1)\pi}{2n}\right)$ for $0 \le k \le n-1$.

2-2. Show that the Chebyshev polynomial T_n is a solution of the differential equation:

$$(1 - x^2)\frac{d^2f}{dx^2} - x\frac{df}{dx} + n^2f = 0.$$

2-3. Use the identity/formula: $\sum_{k=0}^{N} \cos(\varphi + k\alpha) = \frac{\sin \frac{(N+1)\alpha}{2} \cos(\varphi + \frac{N}{2}\alpha)}{\sin \frac{\alpha}{2}}$ to show that:

[12]

[5]

[8]

$$\sum_{k=0}^{N} T_m(x_k) T_n(x_k) = 0, \text{ for } m \neq n,$$

where $x_k = \cos\left[\frac{(2k+1)\pi}{2(N+1)}\right]$, $0 \le k \le N$, are the roots of T_{N+1} .

Problem 3 [45 Marks]

3-1. Given the integral

$$\int_0^3 \frac{\sin(2x)}{1+x^5} dx = 0.6717578646 \cdots$$

3-1-1. Compute T(J) = R(J, 0) for J = 0, 1, 2, 3 using the sequential trapezoidal rule. [10]

- **3-1-2.** Use the results in **3-1-1.** and Romberg's rule to compute the values for the sequential Simpson rule $\{R(J,1)\}$, sequential Boole rule $\{R(J,2)\}$ and the third improvement $\{R(J,3)\}$. Display your results in a tabular form.
- **3-2.** State the three-point Gaussian Rule for a continuous function f on the interval [-1,1] and show that the rule is exact for $f(x) = 5x^4$.

3-3. Use Jacobi's method to find the eigenpairs of the matrix

$$A = \begin{bmatrix} 1 & -2 & 4 \\ -2 & 5 & -2 \\ 4 & -2 & 1 \end{bmatrix}$$

[18]

God bless you!!!